

Utility of Marginal Donors in Liver Transplantation

HwanHyo, Lee

Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea

Contents

- > Review of Liver Transplantation(LT) Data
- > Marginal Donors in LT
- > Steatosis
- > Small-for-Size(SFS) Graft

Deceased & Living Donors

1993 – 2002, UNOS

Deceased Donor Organs

Recovered

1993-2002, UNOS

Waiting List at 1993-2002

2000, 2001, 2002

Organ Type	2000	2001	2002
Kidney	3001	3119	3171
Pancreas	15	40	27
Kidney-Pancreas*	193	221	201
Liver	1784	2012	1756
Intestine*	23	45	52
Heart	617	637	552
Lung	492	491	468
Heart-Lung	43	40	37
Total *	6054	6455	6077

^{*} Total Unique Patient Deaths

Waiting list in LT, konos

Deceased donors in LT KONOS

Deceased and living donors in LT

KONOS

Liver Transplantation in SMC

Organ Transplantation Center (OTC)

Contents

- > Review of Liver Transplantation(LT) Data
- > Marginal Donors in LT
- > Steatosis
- > Small-for-Size(SFS) Graft

Ideal Graft in LT

- Deceased donor
- Young adult age
- Enough graft size
- No steatosis

What is the definition of marginal liver donors?

Donor with Potential Risk Factor

initial poor function (IPF) or primary nonfunction (PNF)

- Increasing age
- Prolonged ischemia
- Hypotension
- Inotropic support

- Steastosis
- Partial grafts
- Gender mismatch
- Non-heart beating donors (NHBD)

The limits of donor age

- Donor age of more than 70 years
- Associated with lower patient and graft survival
- Morphologic changes
- Smaller and dakercolored
- Fibrous thickening of capsule

- Endothelial cell injury during CIT
- Decreased ATP synthesis after reperfusion

Donor Age

Donor age in LT

SMC OTC

Prolonged Cold Ischemia Time (CIT)

- Independent risk factor for liver preservation injury
- More than 14 hours: associated with a two-fold increase in preservation damage
 - Prolonged postoperative course
 - Biliary stricture
 - Decreased graft survival

Prolonged CIT

- Sinusoidal cell damage & Hypercoaguability
- Metabolic activity 10-fold |
- Anaerobic metabolism and lactic acidosis
 - Decrease of ATP & hypoxanthine
 - Increase of reactive oxygen species

Ischemia-reperfusion(IR) injury

Reperfusion – insult on transplant liver

- Endothelial / Kupffer cell swelling
- Vasocontriction
- Leukocyte entrapment
- Platelet aggregation within sinusoids

interactions between different complex mechanisms

Failure of Microcirculation

Failure of active transmembrane transport

Intracellular edema

Vasocontriction

Ischemia Reperfusion

Imbalance between nitric oxide(NO) and endothelin(ET)

1st Step of IR injury

- **Liberation of endothelin-1(ET-1)**
- > Activation of Ito cells
- > Constriction of hepatic sinusoids
 - Activation of Kupffer cells
 - Release of oxygen derived free radicals (ODFR)

Reduced blood flow

1st Step of IR injury

- Up-regulation of adhesion molecules
- Activation of adhesion molecules (i.e., selectins, integrins & Ig)
- > Liberation of chemokines from Kupffer cells
- Rolling and sticking Neutrophils to endothelial cells \(\)
 - Platelet aggregation
 - Sinusoidal endothelial cell (SEC) apoptosis

Tissue injury

2nd Step of IR injury

Prevention of Preservation Injury

- Allows extended ischemia and rewarming times
- Preventing organ damage during CIT
- > Prolonged storage
- University of Wiscosin(UW) solution
- Histidine-tryptophan-ketoglutarate (HTK) or Bretschneider solution

Contents

- > Review of Liver Transplantation(LT) Data
- > Marginal Donors in LT
- > Steatosis
- > Small-for-Size(SFS) Graft

What is the role of Steatosis?

- Macrosteatosis:macrovesicular fatty change
- Microsteatosis : small vacuole deposits
- Increase in cell volume: obstruction of hepatic sinusoidal space

1% of steatosis*

functional graft mass by 1%↓

* Marcos et al, Transpl 2000

Impact of Steatosis on Graft Outcome

Mild (< 30%)

Steatosis

Severe (>60%)

- Primary nonfunction
- Early poor graft function

Graft Failure

good result

Degree of Steatosis Acceptable for LDLT

Microsteatosis: less injury and graft survival rates similar to normal livers

- Macrosteatosis (< 30%): can be used</p>
- Moderate macrosteatosis(<50%): could be used, if GV-to-SLV is more than 40%

Accurate Detection of Steatosis

- Preoperative liver biopsy: standard method
- > Imaging studies : fatty infiltration findings
- > BMI(predictor of steatosis) > 25

Photographs of Moderate Steatosis

* Macrovesicular steatosis: 5%, Microvesicular steatosis: 20%

Photographs of Severe Steatosis

* Macrovesicular steatosis: 20%, Microvesicular steatosis: 50%

Approach to Donors with Steatosis

- Recommendation
- Low calorie diet (25-30 Cal x ideal body weight (kg) per day)
- > Aerobic exercise
- > Abstinence from alcohol

Overcome of Donor Shortage

Contents

- > Review of Liver Transplantation(LT) Data
- > Marginal Donors in LT
- > Steatosis
- > Small-for-Size(SFS) Graft

Optimal graft size in LT

- Standard liver volume (SLV) or Estimated standard liver weight (ESLW)
- Liver volume optimal for the recipient's metabolic demands

- formula *
- > $SLV(ml) = 706.2 \times BSA (m^2) + 2.4$

Preoperative evaluation of liver volume

- Liver CT (7.5mm slices)
- **RLV(ml):**

Sum of Areas x thickness (7.5)

- Graft-to-recipient's weight ratio (GRWR)
- Graft volume to recipient's SLV (GV/SLV)

Volumetry Example

Standard liver volume (SLV) of recipient

$$= 706.2 \text{ x (BSA)} + 2.4 = 1204 \text{ cm}^3$$

	Donor*		Recipient	
	Volume	%	GRWR	GV/SLV
Whole liver	1167cm ³			
Right lobe (excluding MHV)	705 cm ³	60.4%	1.07%	58.6%
Left lobe (excluding MHV)	431 cm ³	36.9%	0.65%	35.8 %

*CT volumetry

What is the most important thing in LDLT

Large-for-size

Donor safety

Small-for-size

- Primary nonfunction
- Early poor graft function
- Risk of rejection †
- Hepatic artery thrombosis
- Portal vein thrombosis

Graft Failure

Minimum Graft Size (?)

- Lo et al*, 40% or less of GV/SLV
- Kiuchi et al**, less than 1% of GRWR
- Kawasaki et al#, 30-40% of SLV or 0.8~1.0% of GRWR

Lower graft survival

* Lo et al, Transplantation 1996 ** Kiuchi et al, Transplantion 1999 # Kawasaki et al, Ann Surg 1998

Graft Survival

According to GRWR: 1.0, OTC in SMC

* From June 1997 to June 2002, 79 patients received adult LDLT

Graft Survival

According to GRWR: 0.9, OTC in SMC

* From June 1997 to June 2002, 79 patients received adult LDLT

Graft Survival

According to GRWR: 0.8, OTC in SMC

* From June 1997 to June 2002, 79 patients received adult LDLT

Marginal- or Small-for-size grafts

- Graft weight: less than 30% of SLV or 0.8% of GRWR
- Kiuchi: 28% GW of recipient SLV, successful transplantation - primary biliary cirrhosis
- Lo: 25% GW of recipient SLV, successful transplantation – fulminant hepatic failure biliary cirrhosis

Small-For-Size(SFS) syndrome

- Graft weight: less than 30% of SLV or 0.8% of GRWR
- Graft weight, greater than 40% of SLV or 1.0% of GRWR; associated with severe portal hypertension or relative impedence to hepatic venous drainage
 - Poor bile production
 - > Delayed synthetic function; coagulopathy
 - > Prolonged cholestasis
 - > Intractable ascites

Mechanism of SFS syndrome

- Graft inflow: portal venous flow (PVF)
- PVF increase
- high cardiac output
- > low peripheral vascular resistance
- reduced hepatic arterial flow

Mechanism of SFS syndrome

Main factors

- Persistent portal hypertension
- Portal venous hyperperfusion

SFSS

Reduced hepatic arterial flow

- Preoperative conditions(UNOS status, ascites, bilirunint)
- Small functional graft mass
- Postoperative variables (sepsis, bile leak, renal failure)

- Hepatocyte ballooning
- Centrolobular necrosis
- Parenchymal cholestasis

--- Reversible change

Graft regeneration : not affected

Prevention of SFS syndrome

- Hepatic venous drainage (S5,S8)- Rt lobe graft
- Extended right-lobe graft including MHV
- Dual left lobe graft
- Auxiliary Partial Orthotorpic transplantation
- Splenic artery ligation
- Portosystemic shunt

Hepatic venous drainage: S5, S8, RIHV

Extended right-lobe graft including MHV

- Increased risk of donor safety
- Extremely limited

Dual left lobe graft

Left lobe grafts from two donors

Auxiliary Partial Orthotopic Liver Transplantation (APOLT)

- Concept: native liver support graft function
- Fulminant hepatic failure, metabolic disorders
- Inomata et al, 20 recipients
- > Aid for a SFS graft

APOLT in SMC

- 29/ F(168 cm, 56kg), fulminant hepatitis; Lt hemihepatectomy
- Donor: 21/M, her brother, extend left lateral segment; 259 gm GRWR: 0.46 %

- SFS (GRWR<0.8%), associated with excessive PVF (>250 ml/min/100 gm GW)
- Poor graft survival
- Splenic artery ligation (Troisi et al)
- to resolve ascites
- > to increase HAF
- > to prevent thrombocytopenia

Troisi et al, Ann Surg 2003

- Portosystemic shunt; RPV IVC (end-to-side)
- > Nishizaki et al; taken down after reperfusion
- ➤ Takada et al; sustained opening → portal hypoperfusion / hyperammonemia

Experimental studies for the manipulation of marginal donors

Upregulation of Heme Oxygenase System

•Heme Oxygenase-1 (HO-1): hsp32, potent cytoprotective effects

Conclusions

 We should try and develop various clinical or experimental modalities that can be manage marginal donors.

Overcome of Donor Shortage

